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Abstract. We calculate the typical fraction of the phase space of interactions which solve 
the problem of storing a given set of p patterns represented as N-spin configurations, as 
a function of the storage ratio, a = p / N ,  of the stability parameter, K, and of the symmetry, 
7, o f  the interaction matrices. The calculation is performed for strongly diluted networks, 
where the connectivity of each spin, C, is of the order of In N .  For each value of K and 
17, there is a maximal value of a, above which the volume of solutions vanishes. For each 
value of K and a, there is a typical value of 7 at which this volume is maximal. The 
analytical studies are supplemented by numerical simulations on fully connected and 
diluted networks, using specific learning algorithms. 

Opening remark (by HG and IY) 

The major part of this work was performed while the authors participated in the special 
programme, Spin Glasses and their Applications in Physics, Biology and Mathematics, 
at the Institute for Advanced Studies in Jerusalem. Elizabeth Gardner died a few 
months after she returned home from the Institute. We are grateful for having had 
the privilege to interact with her scientifically and socially. Elizabeth deserves credit 
for her fine contribution to this work, but the responsibility for any flaws in its present 
representation is entirely ours. 

1. Introduction 

The models of neural networks which have recently attracted so much attention are 
composed of N binary elements, represented by the spin variables Si = *1 and con- 
nected by the couplings J,]. The dynamics of the network is, in the simplest case (zero 
noise and vanishing thresholds), given by 

The basic problem of these models is to find parameters J ,  for which a set of 
configurations {ty} ( i  = 1, . . . , N ;  p = 1, .  . . , p )  are fixed points of the dynamics. There 
are two lines of approach to this problem. In the first approach, the J,, are given by 
a specific storage prescription. Examples of this approach are what is called Hebb’s 
rule, which is the basis of Hopfield’s model (Hopfield 1982, Amit et a1 1987) or the 
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pseudo-inverse rule (Kohonen 1984), which has been applied to these models by 
Personnaz er a1 (1985) and studied analytically by Kanter and Sompolinsky (1987). 
In both cases the J!, are symmetric, i.e. J,, = J,,.  In the second approach, the parameters 
J,, are found by a dynamical process of learning. An example of this approach is the 
perceptron algorithm (Minsky and Papert 1969), which was applied (Gardner 1988) 
to this class of models in order to find a set of JV which satisfy the inequalities 

6? 1 JtJ6r’K ( 2 )  
I f  1 

subject to the normalisation condition 

J;=1. 
j#i 

(3) 

The patterns (5:) are fixed points of the dynamical equation ( 1 )  even if these inequalities 
are satisfied with K = 0, but a finite K is needed to ensure large basins of attraction. 
When K > 0, it is necessary to specify the normalisation in order to avoid the freedom 
in the value of K due to an overall scaling of the inequalities ( 2 ) .  A convergence 
theorem guarantees that a solution of these inequalities will be reached by the percep- 
tron algorithm provided that a solution exists. The probability of the existence of such 
solutions can be deduced from calculating the fractional volume in the phase space 
of the interaction parameters J,] in which ( 2 )  and (3) are satisfied. Such a calculation 
(Gardner 1988) gives a critical value ( Y , ( K )  of (Y = p /  N, such that this probability, in 
the limit N - ,  00, is equal to 1 for (Y S ( Y , ( K )  and equal to 0 otherwise. For random 
uncorrelated patterns a,(O) = 2 .  

In the present paper we investigate the symmetry properties of the matrices J,, 
which satisfy ( 2 )  and (3). Let us define the symmetry parameter 7 as 

An equivalent definition of 7 is 

where J:’ = ;( J ,  f J,,) are the symmetric and antisymmetric components of JIJ .  When 
7 = 1 the matrix is symmetric and when 7 = - 1 it is fully antisymmetric. When 7 = 0, 
there is no correlation between J,, and JJI on the average, which also means that the 
symmetric and antisymmetric components have equal weights. The symmetry of the 
matrix JV can also be characterised by the ratio, k, of the antisymmetric and symmetric 
components. This parameter is related to 7 by 

1 - k 2  
7 7 = 1 + .  (6) 

The relevance of symmetry in neural network models has been pointed out by 
several authors. Krauth et a1 (1988) have shown recently that the basins of attraction 
depend not only on K ,  but also on 7. For a given K and (Y < ( Y , ( K ) ,  solutions with 
smaller values of 7 (less symmetric) have larger basins of attraction. The role of 
asymmetry was also emphasised, in a different context, by Parisi (1986). In a symmetri- 
cally coupled network there are many (exponentially many) fixed points outside of 
the basins of attraction of the stored patterns. Parisi suggested that a distinction be 
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made between a ‘meaningful’ operation of the network, when the system converges to 
one of the learned patterns in response to a ‘known’ external stimulus (initial configur- 
ation), and a ‘meaningless’ behaviour, when the system wanders around in the configur- 
ation space until a ‘known’ stimulus appears. To make this behaviour plausible, one 
has to eliminate the spurious fixed points, and this can be done by increasing the 
asymmetry. Such a relation between the asymmetry and the ‘landscape’ was studied 
in the case of spin glasses (with deterministic dynamics) by Gutfreund et a1 (1988). 
The effect of the symmetry of the J,, on the dynamics in spin-glass systems was 
investigated by Hertz et a1 (1987) and by Crisanti and Sompolinsky (1988). 

The preceding paragraph motivates the study of the symmetry properties of the 
solutions of (2) and (3). In particular, one can ask the following questions. What are 
the typical values of 7 and what is their distribution in the subspace of matrices Jli 
which solve (2) and (3) for given a and K ?  What is the storage capacity for a fixed 
symmetry, i.e. what is ~ J K ,  v)?  What values of 7 are reached by specific learning 
algorithms, and what is their dependence on the initial JI, ? These and related questions 
are the subject of the present paper. 

In § 2 we extend the calculation of Gardner (1988) to derive the fractional volume 
of solutions (2) and (3) with a specific symmetry 7. It turns out that this can be done 
analytically only in a diluted network in which each neuron is connected, on the 
average, to C -- In N other neurons. As N + 00, the volume is sharply peaked around 
a typical ~ ( a ,  K ) .  In 0 3 we investigate the storage capacity as a function of 7. In § 4 
we present results of numerical algorithms for finding solutions in diluted and fully 
connected networks. The main conclusion is that typical solutions in fully connected 
networks are significantly more symmetric than in diluted networks. We also investigate 
the accessibility, via the learning algorithms, of solutions with different values of 7. 

2. The fractional volume of solutions with a given symmetry 

The fractional volume, V,  in the space of the JV, of solutions of the inequalities (2) 
with a definite value of the symmetry parameter 7 is given by 

where O(x) is the step function: O(x) = 1 when x >  0, and O(x) = 0 otherwise. In the 
absence of restrictions on the correlations between Jy and A,, i.e. without the second 
6 function in the first term in large square brackets, the sites i are decoupled and the 
fractional volume can be calculated for each of them separately. The typical fractional 
volume for all possible representations of the ( 5 7 )  requires the averaging of In V over 
the probability distribution of the [f and can be done using the replica method (Gardner 
1988). This calculation cannot be simply extended to the present case, because now 
the different rows of the matrix J, are coupled. The difficulty arises in the averaging 
over the ,$. In the replica method this averaging is performed over V”, which is 
obtained from (7) by adding a replica index, a, to each of the variables JIJ and taking 
a product over a. Using the integral representation of the 8 functions one can average 
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over the probability distribution of the (f 

Performing the average over the (7, we get a cumulant expansion which does not 
converge, because of the summation over i (see appendix 1). 

However, this calculation can be performed in a symmetrically diluted network in 
which each site is connected, on the average, to C other sites, so that the existence of 
a bond from i to j implies also the existence of a bond from j to i. Note that this is 
different from the diluted model of Gardner et a1 (1987) in which the existence of a 
bond ( i ,  j )  does not depend on the existence of a bond 6, i ) .  Continuing with our 
diluted model, the normalisation condition is modified to 

J:= C. ( 9 )  
If' 

N is replaced by C in (7) and (8), and the summations over j in these equations are 
on the C sites connected to site i. When C = In N, the higher terms in the cumulant 
expansion are of lower order of magnitude than the leading quadratic term (appendix 
1). The result of the averaging over the (7 is 

] # ,  L Ln.1  p J # l  

The first term in the exponential suggests that we define the local order parameter 

1 
q L = -  c J p I J i : .  c 1'1 

To treat the second term, we define a parameter g$ 

Assuming that g is independent of the site i, summing over i and dividing by N, we have 

1 
8 : p  = - c xE,hJ,, 

N ,  

where we have defined a new local order parameter 

In appendix 2 we calculate ( V " )  for replica and site-symmetric solutions. We did 
not check the stability of the solutions to replica symmetry breaking. When there are 
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no restrictions on the correlations between JIJ and J,#, the replica-symmetric solutions 
are stable for all a and K (Gardner 1988) .  We believe that in the present case they 
are stable at least for a range of values of 7 within which the volume of solutions 
attains its maximum. However, as will be discussed in Q 3, there are signs of replica 
symmetry breaking for values of 77 in an interval - 1 < 77 < qm( K ) ,  which increases with 
K .  The assumption of site symmetry can be viewed as a mean-field ansatz. We have 
checked it by simulations, calculating the parameters qLp and h i p  for different solutions 
obtained by the perceptron algorithm. The width of the distributions of these para- 
meters over the sites i decreases sharply as N increases, and it seems that in the N + CO 

limit, their distributions will become S functions. 
The result for the typical volume is 

f ln(1- q )  +: ln(1 - x 2 ) + -  
2 ( l - q ) ( l - x Z )  

where 

dA 
DA = - exp( -;A2). 47 

The variable r is an additional parameter which appears in the calculation (see appendix 
2 ) .  The saddle-point equations for q, h and r are 

q - 2 hx + qx2  
= a F 2 ( ~  - r, q )  

( 1  - X * ) 2  

r = x F , ( K - r , q )  ( 1 9 )  
where 

One can solve equations ( 1 7 ) - ( 1 9 )  for given values of a, K and 77, and substitute 
the saddle-point values of q, h and r into (13) to obtain the typical volume. In figures 
l ( a )  and l (b) ,  we plot the typical volume per bond, normalised to unity at a = 0, 
7 = 0, as a function of 77 for several values of a, and for K = 0 and K = 0.5, respectively. 
It should be emphasised that these curves represent the volume per bond. To obtain 
the relative volume in the space of matrices .lo, one has to raise these curves to the 
(CN)th  power. Thus, when N + CD the relative volume becomes sharply peaked around 
a typical ~ ( a ,  K ) .  

We observe that the volume vanishes when 77 + *1 (if it has not vanished for lower 
171). In the case 77 = -1, corresponding to an antisymmetric JU, there are no solutions 
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-1.0 - 0.5 0 0.5 1 .o 
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Figure 1. The typical fractional volume (per bond) plotted against 7 for ( a )  K = 0 and 
( b )  K = 0.5 and several values of U. The dotted curve connects points of maximal volume. 

to (2). If one assumes that such a solution exists, one immediately arrives at a 
contradiction, because the sum of the left-hand side of (2) over i is identically zero 
when J ,  = -4,. On the other hand, when r] = 1, corresponding to a symmetric J , ,  such 
solutions exist, but they are confined to a region in a subspace of lower dimension 
than that of the space of all the Jl, ( iCN as against C N )  so that their fractional volume 
vanishes. These limits are discussed in the next section. 

To obtain the values of r ]  at which the volume reaches its maximum, note that V, 
depends on r] only through x. Thus, the maximum of V, with respect to 7 is its 
maximum with respect to x. The saddle-point equation for h at the maximum reduces 
to 

1 X -- 
2 ( 1 - q )( 1 - x') = O. 

Hence the maximum of V, is obtained at x = 0, which implies h = r ]  and r = 0. Solving 
(17) and (18) with these values, one finds the asymmetry parameter r] at the maximum, 
which turns out to be positive for all K .  The maxima for different values of a are 
connected by the dotted curves in figures l ( a )  and  l (6) .  It is interesting to point out 
that at the maximum the expression in (13) reduces to ( e)'", where is the typical 
volume per bond when no correlations between J ,  and 4, are imposed (Gardner 1988). 

3. The critical storage capacity 

The critical storage capacity is obtained when the fractional volume shrinks to zero. 
This happens when there is only one solution, i.e. when q + 1. The second logarithmic 
term of (13) indicates that 1x1 C 1, so that by the definition of x (equation (14)), q+ 1 
implies that the limit h + r] has to be taken as well. In the limit q + 1, the functions 
F, , F 2 ,  defined in (20), become 

X 

D t (  t + K - r ) k .  (22) Lr F k (  K - r, q + 1) = 

Thus, to obtain the critical storage capacity, C Y , ( K ,  r ] ) ,  at a given r],  we have to solve 
(17)-(19), where on the left-hand side we put q = 1, h = r] ,  and on the right-hand side 
we use (22). In figure 2, we plot [ Y J K ,  r ] )  for several values of K .  Two points deserve 
special attention. First, the K = 0 curve indicates the existence of solutions with r ]  = -1, 
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Figure 2. The critical storage capacity plotted against 7, for K = 0, 0.25, 0.5 and 1.5.  The 
solid curve represents critical solutions with 9 = 1 ,  and dotted curves represent solutions 
with O <  q < 1.  The broken curve connects points of maximal volume. 

although we showed that such solutions do not exist. This apparent contradiction will 
be discussed below. Second, for every K > 0 there exists a minimal value of 7 below 
which there are no solutions with q = 1 .  These are the values of 7 at which the solid 
curves turn into dotted curves. The meaning of the dotted curves will also be discussed 
below. 

Just like the maximum of the volume, the maximum of ( Y , ( K ,  7) with respect to 7 
is also obtained at x = 0 and r = 0. This immediately gives the familiar result (Gardner 
1988) 

a,( K )  = Dt( f + K ) ' )  - '. 
The value of 7 at the maximum is found from (17)  (with x = 0, a = a,) to be 

For example, at K = 0 when a ,  = 2, the symmetry parameter is 7 = 1/  7 ~ .  Thus, the best 
storage capacity is obtained when J,j and Jji are correlated. If we insist on solutions 
with no such correlations (7 = 0), we find that a,(O, 0) = 1.94. The maxima of (Y,(K, 7) 
are indicated by the broken curve in figure 2. 

In order to find the critical storage capacity for symmetric matrices, note that in 
the limit 7 = 1 by definition h = q implying that x = 1 .  From (17)-(19), one finds in 
this limit 

where r is found by solving 
W 

Dt( t +  K - r ) .  (26) 
= I_,+, 

For K = 0, a,(O, 1 )  = 1.278. 
Let us now discuss the other end of values of 7. We have seen that x = 1 when 

7 = 1 .  One can deduce, in the same manner, that x = -1  when 7 = -1. Between these 
two limits x increases monotonically with 7. It can be seen from (19), in the limit 
q + 1 ,  that r increases monotonically with x, from r = -a up to a positive value 
determined by (19) with x = 1. Therefore, 7 is a monotonically increasing function of 
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r, and it attains its lowest value in the limit r +  -00. Taking this limit one finds the 
‘most antisymmetric’ solutions 

1 
a,( r + -00) = - 

K2+2’  

For each value of K there exists a minimal value of 7 for which a critical solution 
(with q = 1)  exists. These are the left end-points of the solid curves in figure 2 .  Note 
that when K > a, there are no such solutions with negative 7. For K = 0, the minimal 
value of 7 is -1, and for K > 0, it is always greater than -1. The existence of solutions 
at K = 0 and  7 = -1 can be understood when one considers the distribution of the local 
‘fields’ h: = ( :Z,+,J , f (r .  This distribution has a 6 function component at K and a 
Gaussian tail above it. When K + 0 and 7 + -1, this distribution reduces to a S function 
at K = 0. Thus, in this limit, the inequalities (2) become strict equalities. 

Note that the conclusion that solutions with the lowest value of 7 correspond to 
r +  -CO is not restricted to q = 1. For any given value of q there exists a ‘most 
antisymmetric’ solution, given by r + -00. In this limit 

F,(  K - r, q )  - K - r 

F2( K - r, 9) - ( K  - r)* -t 9 

(29) 

(30) 

leading to 

4 a,( r + -CO) = - 
K 2 + 2 q  

which are generalisations of (27) and (28) for q < 1. For K > 0, we can eliminate q 
from (31) and (32) to get the maximal storage capacity for highly antisymmetric 
solutions (with q < 1) 

(33) Q c ( K ,  7 )  = (1 4- 7 7 ) / 2 K 2 .  

This is the critical storage capacity for 7 < T , ( K ) ,  where 7, is defined in (27). It is 
represented by the dotted curves in figure 2 .  

The maximal a is always obtained when the volume of solutions shrinks to zero. 
If this volume is convex, then there remains in this limit a single solution, therefore 
q = 1. In the range -1 < 7 < T , ( K ) ,  the volume of solutions with a given 7 shrinks to 
zero, but q < 1. This means that there are two, or  more, isolated solutions such that 
any interpolation between them gives solutions with higher 7. Thus, in this range the 
volume of solutions breaks u p  into separate regions in the space of the .TI,. This is a 
sign of replica symmetry breaking. 

4. Numerical simulations 

In the present section we study the symmetry of solutions obtained by a specific learning 
algorithm. The algorithm proceeds as follows. At each site one defines (consecutively 
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for every pattern) the parameters 

where 

Starting from some initial matrix J ; ,  the current values of Jii are modified by 

( 3 7 )  
1 

N 
AJv = ~f - f ( h y ) e y e r  

until all the ~f are zero. We shall present results for two choices of the function f ( h ? ) .  
(i)  The perceptron algorithm 

f ( h f ) = A  ( 3 8 )  
is guaranteed to converge to a solution, if one exists, in a finite number of steps. 

(ii) The relaxation algorithm 

f ( h ? )  = -h?)llJlli (39) 
is a modification of an algorithm suggested recently by Abbott and Kepler (1988). 
This algorithm converges (if a solution exists) for 0 < A d 2, and is most efficient for 
A = 2 .  

We have seen in § 3 that the fractional volume of solutions is sharply peaked (as 
N + CO) around a typical symmetry. The question is whether the broad range of values 
of 7 of existing solutions, around this typical value, but having a vanishingly small 
relative volume, can ever be reached by the learning algorithms. This can be done to 
some extent, when the search in the space of solutions is started with an initial matrix 
with a specific symmetry. To demonstrate this, we first present results of simulations 
for a fully connected network using the perceptron algorithm. We are particularly 
interested in the effect of the starting matrix and of the ‘learning’ step A on the final 
symmetry. 

In figure 3 ( a )  we show results for the symmetry of the solutions when the initial 
{ J ; }  is a random Gaussian matrix with specified values of rl0 = -1,O, 1. The size of 
the network is N = 50, the learning step is A = 1, and the stability parameter is K = 0. 
We wish to point out at the outset that going to larger networks does not change the 
results described below. One observes that the ‘memory’ of the initial symmetry 
decreases when a increases and is lost completely for a > 1. Figure 3 ( 6 )  shows that 
this ‘memory’ is preserved to higher values of a when A < 1, while the dependence on 
the initial conditions is lost faster when A > 1 (figure 3( c ) ) .  This dependence on A can 
be easily understood in the case of K = 0. In this case the normalisation of the Jv plays 
no role and can be omitted. The final Jv has the form 

where n? is the number of times that the inequality (2) was not satisfied by pattern /I 
at site i. For large A, the second term is dominant and the symmetry of Jv is determined 
mainly by the distribution of the parameters n f  . For small A the algorithm performs 
a fine search for solutions, as close as possible to the initial matrix J ; .  This explains 
the considerably stronger dependence of 7 on its initial value in figure 3 ( a ) .  
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-. ( b )  O n 0  

- O A O -  
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0 A 3 -  
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0 A 3 -  
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l l < # > , , , , , l , , , , :  

Figure 3. Symmetry of the solutions obtained by the 
perceptron algorithm with K = 0, in a fully connected 
network of 50 neurons, as a function of the number 
of patterns. Initial matrices are Gaussian random 
with asymmetry T ~ .  We present plots for ( a )  A = 1.0, 
( 6 )  A =0.1 and ( c )  A = 2.0. In each plot the open 
circles (0) are for T,, = 1 the open triangles (A) are 
for T,, = 0 and the open diamonds (0 )  are for qo = -1. 

It is very hard to continue these graphs to higher a, for two reasons. 
( i)  The probability that a solution exists for a given set of {(y} and a < 2,  approaches 

1 when N + CO (Venkatesh 1986), but for finite N the corrections may be non-negligible. 
For example, for N = 50 and a = 1.8, this probability is about 0.001. 

(ii) The time required to find a solution, if it exists, shows a critical slowing down 
(Opper 1988). 

It is reasonable to assume that the value of 7 obtained in figures 3( a )  and 3( c )  for 
the highest a, when all memory of the initial conditions has been lost, is close to the 
most probable value of 7. Judging from the weak dependence of 7 at the maximum 
fractional volume for a dilute network, when a > 1 (see figure l ( a ) ) ,  we can also 
assume that this value of 7 will not change much u p  to a c ,  where it is determined 
uniquely. Thus, we conclude that ~ ~ ( 0 )  = 0.7-0.8, which shows that the symmetry at  
a ,  in a fully-connected network is significantly higher than in a dilute network, where 
we found analytically ~ ~ ( 0 )  = 1 /  T. 

In figure 4(a)  we use the relaxation algorithm with A = 2 to obtain the symmetry 
of the final solution in a dilute network. It is hard to satisfy the conditions for strong 
dilution ( C  = In N )  in simulations, because C cannot be very small if one wants to 
find solutions for a = p /  C > 1. Nevertheless, even for N = 500 and C = 50 one observes 
a significant reduction of the symmetry of solutions at high a, compared to the fully 
connected network, to values close to what is expected at strong dilution. The con- 
tinuous curve represents the symmetry of the typical solutions in a strongly diluted 
network. For comparison, we present in figure 4 ( b )  results for a fully connected 
network of N = 50, using the same algorithm. The symmetry at the highest accessible 
a is roughly the same as in figure 3(a) ,  although for lower a this algorithm shows a 
weaker dependence on the initial conditions than the perceptron algorithm with A = 1 .  

In this section we have presented results for K = 0. One finds similar behaviour at 
finite K ,  except that in this case the typical solutions are more symmetric, as expected. 
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5. Concluding remarks 

We have calculated the fractional volume of matrices J, ,  of a given symmetry, for 
which p = cyN random patterns are stable fixed points of the network dynamics. This 
could be done analytically only in strongly diluted networks. One novel feature which 
emerges in the calculation is that the matrices J ,  at maximal storage in the range 
-1 < 7 < T , ( K )  are not characterised by q = 1 .  This indicates that when critical storage 
is approached the space of solutions of (2) and (3)  in this range is not simply connected 
and that, probably, replica symmetry is broken. This observation calls for a more 
thorough study of the space of solutions, in particular the stability of the replica 
symmetric solution and how its breaking appears as a function of cy, K and 7. 

In the introduction we have mentioned the study of the symmetry of the J ,  by its 
suggested effect on the performance of such networks as models for associative memory. 
In the present paper we have only studied the existence of solutions of definite symmetry 
and how they can be reached by specific learning algorithms. We have not investigated 
the effect of the symmetry on the stability of the learned patterns to noise, their basins 
of attraction, and related questions. This is a subject of a separate study. 
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Appendix 1 

In this appendix we show that the average of 

over the probability distribution 

P(.$f) = is(&: - 1 )  + f s ( f f  + 1 )  

( A l . l )  

(A1.2) 
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gives (10). We start with the cumulant expansion 
/ 3 c  \ 

(A1.3) 

where z is the argument in (Al.1). The first four cumulants in this expansion are 

c, = ( 4  
c, = + ( ( Z 2 )  - ( z ) 2 )  

c, = ;((z3) - 3(Z2)(2) + 2(z) ' )  
(A1.4) 

C4=&((z4) -4(z3)(2)-3(z2),+ 1 2 ( ~ ' ) ( ~ ) ~  - 6 ( ~ ) ~ ) .  

The first cumulant clearly vanishes, which greatly simplifies the subsequent terms. The 
evaluation of the kth moment, ( z k ) ,  involves the average 

(s:'s:'5:25:2. * * 5:ks;h) (A1.5) 

with the restrictions i ,  # j , ,  . . . , ik  # j k .  The non-vanishing contributions to this average 
are the fully contracted terms. These can be represented diagramatically as closed 
loops. A loop of order n has n vertices labelled by site indices. Adjacent vertices 
have different site indices. The contribution of such a loop is (as N + m )  

o(N"(c/N)"'c-"'2). (A1.6) 

The first factor, N" ,  is the number of groups of n sites. The second factor is the 
probability that the bonds, which are necessary to connect a given group n sites into 
a closed loop, actually exist in the network, the number of such bonds is n'= 1 for 
n = 2, and n' = n otherwise. The third factor comes from the normalisation factor in 
(Al.1). The kth moment has loops of length k and, for k z 4 ,  also products of shorter 
loops. These products are represented by disconnected diagrams and are always 
cancelled by the additional terms in the kth cumulant. This, is another example of 
the linked-cluster theorem which appears so often in statistical mechanics and many- 
body physics. 

Thus, the contribution of the kth cumulant is of order N for k = 2,  and of order 
Ck" for k > 2. Therefore, if C is of order N, as in a strongly connected network, the 
cumulant expansion does not converge. If, however, C s In N, all the terms k > 2 can 
be neglected as N + CO. This gives (10) of the text, in which only the ( z 2 )  term is retained. 

Appendix 2 

We calculate ( V " )  for a replica- and site-symmetric solution, introducing the order 
parameters qkp and hbp  by means of S functions. Using the integral form of the S 
functions, we can write, after rearrangement of terms, 

(A2.1) 
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where 

since the integrals over x and  A factorise over the patterns p, where 

@ ( E :  9 G: 9 F b p  7 Hhp) 

and S is the denominator of (7 ) ,  evaluated easily to give 

S = exp( CN/2) .  

For replica- and site-symmetric solutions, i.e. for all i, a and a # p, 

E L = €  q b p  = 4 FLp = F 

G k = G  hbp  = h Hbp = H 

we can express the integrand of (A2.1) as 

exp(aCG,(q ,  h)+iCNG2(E, F, G, H)) 

n n ( n - 1 )  n n ( n - 1 )  
q F  +- 7G -- - E -- 

x e x p  c N ( 2  2 2 2 

(A2.4) 

(A2.5) 

(A2.6) 

since the integrals over J,, factorise over pairs of sites ( i , j ) .  For n e  1 we find 
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where to is determined by a saddle-point equation, and 

G2( E, F, G, H)  
n F+ H 
2 2 E + F + G + H  

= - - l n ( E + F + G + H ) + n  

n n F - H  
--In( E + F- G - H )  -I-- 

2 2 E + F - G - H '  

Setting E, F, G and H at their saddle-point values, we finally have 

1 q ( l - q ) - h ( v h )  
2 ( l - q ) 2 - ( q - h ) 2  

x e x p n a C N [ I d r I n H (  ~ - r + & t  Ji-4 )-5-] 1 r2 

a In[( 1 - q ) 2  - ( 7  - h) ' ]  +- 

77-h 
having defined 

r = -- to .  

(A2.10) 

(A2.11) 

( A2.12) 

The typical fractional volume is found by evaluating q, h and r at their respective 
saddle points and using 

(V")-1 
(In V)=lim- 

n-o n 

to obtain (13) .  
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